Mechanism of polarization of Listeria monocytogenes surface protein ActA
نویسندگان
چکیده
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.
منابع مشابه
Prevalence of Listeria monocytogenes in raw milk in Kerman, Iran
Listeria monocytogenes as one of the most important pathogen in public health concerns is transmitted through consumption of contaminated food. The pathogen has been considered as a potential source of contamination of raw milk and dairy products. This research was aimed to investigate prevalence of L. monocytogenes in raw milk in Kerman region. In the summer of 2011, a total ...
متن کاملAssociation of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes.
Listeria monocytogenes is a Gram-positive intracellular bacterial pathogen that colonizes the cytosol of eukaryotic cells. Recent transcriptomic studies have revealed that intracellular L. monocytogenes alter expression of genes encoding envelope components. However, no comparative global analysis of this cell wall remodeling process is yet known at the protein level. Here, we used high resolut...
متن کاملActA from Listeria monocytogenes can interact with up to four Ena/VASP homology 1 domains simultaneously.
The facultative intracellular human pathogenic bacterium Listeria monocytogenes actively recruits host actin to its surface to achieve motility within infected cells. The bacterial surface protein ActA is solely responsible for this process by mimicking fundamental steps of host cell actin dynamics. ActA, a modular protein, contains an N-terminal actin nucleation site and a central proline-rich...
متن کاملRemodeling of the Listeria monocytogenes cell wall inside eukaryotic cells
Listeria monocytogenes is an intracellular Gram-positive bacterial pathogen that produces many types of surface proteins. To get insights into its intracellular lifestyle, we used high-resolution mass spectrometry to characterize the cell wall proteome of bacteria proliferating within the eukaryotic cell. The relative amount of a few surface proteins was found notoriously different in intracell...
متن کاملEna/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility.
The Listeria monocytogenes surface protein ActA mediates actin-based motility by interacting with a number of host cytoskeletal components, including Ena/VASP family proteins, which in turn interact with actin and the actin-binding protein profilin. We employed a bidirectional genetic approach to study Ena/VASP's contribution to L. monocytogenes movement and pathogenesis. We generated an ActA a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular Microbiology
دوره 59 شماره
صفحات -
تاریخ انتشار 2006